Step |
Hyp |
Ref |
Expression |
1 |
|
nn0cn |
|- ( N e. NN0 -> N e. CC ) |
2 |
|
nn0p1nn |
|- ( N e. NN0 -> ( N + 1 ) e. NN ) |
3 |
1 2
|
jca |
|- ( N e. NN0 -> ( N e. CC /\ ( N + 1 ) e. NN ) ) |
4 |
|
simpl |
|- ( ( N e. CC /\ ( N + 1 ) e. NN ) -> N e. CC ) |
5 |
|
ax-1cn |
|- 1 e. CC |
6 |
|
pncan |
|- ( ( N e. CC /\ 1 e. CC ) -> ( ( N + 1 ) - 1 ) = N ) |
7 |
4 5 6
|
sylancl |
|- ( ( N e. CC /\ ( N + 1 ) e. NN ) -> ( ( N + 1 ) - 1 ) = N ) |
8 |
|
nnm1nn0 |
|- ( ( N + 1 ) e. NN -> ( ( N + 1 ) - 1 ) e. NN0 ) |
9 |
8
|
adantl |
|- ( ( N e. CC /\ ( N + 1 ) e. NN ) -> ( ( N + 1 ) - 1 ) e. NN0 ) |
10 |
7 9
|
eqeltrrd |
|- ( ( N e. CC /\ ( N + 1 ) e. NN ) -> N e. NN0 ) |
11 |
3 10
|
impbii |
|- ( N e. NN0 <-> ( N e. CC /\ ( N + 1 ) e. NN ) ) |