Metamath Proof Explorer


Theorem elnn0nn

Description: The nonnegative integer property expressed in terms of positive integers. (Contributed by NM, 10-May-2004) (Proof shortened by Mario Carneiro, 16-May-2014)

Ref Expression
Assertion elnn0nn
|- ( N e. NN0 <-> ( N e. CC /\ ( N + 1 ) e. NN ) )

Proof

Step Hyp Ref Expression
1 nn0cn
 |-  ( N e. NN0 -> N e. CC )
2 nn0p1nn
 |-  ( N e. NN0 -> ( N + 1 ) e. NN )
3 1 2 jca
 |-  ( N e. NN0 -> ( N e. CC /\ ( N + 1 ) e. NN ) )
4 simpl
 |-  ( ( N e. CC /\ ( N + 1 ) e. NN ) -> N e. CC )
5 ax-1cn
 |-  1 e. CC
6 pncan
 |-  ( ( N e. CC /\ 1 e. CC ) -> ( ( N + 1 ) - 1 ) = N )
7 4 5 6 sylancl
 |-  ( ( N e. CC /\ ( N + 1 ) e. NN ) -> ( ( N + 1 ) - 1 ) = N )
8 nnm1nn0
 |-  ( ( N + 1 ) e. NN -> ( ( N + 1 ) - 1 ) e. NN0 )
9 8 adantl
 |-  ( ( N e. CC /\ ( N + 1 ) e. NN ) -> ( ( N + 1 ) - 1 ) e. NN0 )
10 7 9 eqeltrrd
 |-  ( ( N e. CC /\ ( N + 1 ) e. NN ) -> N e. NN0 )
11 3 10 impbii
 |-  ( N e. NN0 <-> ( N e. CC /\ ( N + 1 ) e. NN ) )