| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eluz2b3 |
|- ( N e. ( ZZ>= ` 2 ) <-> ( N e. NN /\ N =/= 1 ) ) |
| 2 |
1
|
orbi2i |
|- ( ( N = 1 \/ N e. ( ZZ>= ` 2 ) ) <-> ( N = 1 \/ ( N e. NN /\ N =/= 1 ) ) ) |
| 3 |
|
exmidne |
|- ( N = 1 \/ N =/= 1 ) |
| 4 |
|
ordi |
|- ( ( N = 1 \/ ( N e. NN /\ N =/= 1 ) ) <-> ( ( N = 1 \/ N e. NN ) /\ ( N = 1 \/ N =/= 1 ) ) ) |
| 5 |
3 4
|
mpbiran2 |
|- ( ( N = 1 \/ ( N e. NN /\ N =/= 1 ) ) <-> ( N = 1 \/ N e. NN ) ) |
| 6 |
|
1nn |
|- 1 e. NN |
| 7 |
|
eleq1 |
|- ( N = 1 -> ( N e. NN <-> 1 e. NN ) ) |
| 8 |
6 7
|
mpbiri |
|- ( N = 1 -> N e. NN ) |
| 9 |
|
pm2.621 |
|- ( ( N = 1 -> N e. NN ) -> ( ( N = 1 \/ N e. NN ) -> N e. NN ) ) |
| 10 |
8 9
|
ax-mp |
|- ( ( N = 1 \/ N e. NN ) -> N e. NN ) |
| 11 |
|
olc |
|- ( N e. NN -> ( N = 1 \/ N e. NN ) ) |
| 12 |
10 11
|
impbii |
|- ( ( N = 1 \/ N e. NN ) <-> N e. NN ) |
| 13 |
2 5 12
|
3bitrri |
|- ( N e. NN <-> ( N = 1 \/ N e. ( ZZ>= ` 2 ) ) ) |