| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
| 2 |
|
nngt0 |
|- ( N e. NN -> 0 < N ) |
| 3 |
1 2
|
jca |
|- ( N e. NN -> ( N e. NN0 /\ 0 < N ) ) |
| 4 |
|
elnn0 |
|- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
| 5 |
|
breq2 |
|- ( N = 0 -> ( 0 < N <-> 0 < 0 ) ) |
| 6 |
|
0re |
|- 0 e. RR |
| 7 |
6
|
ltnri |
|- -. 0 < 0 |
| 8 |
7
|
pm2.21i |
|- ( 0 < 0 -> N e. NN ) |
| 9 |
5 8
|
biimtrdi |
|- ( N = 0 -> ( 0 < N -> N e. NN ) ) |
| 10 |
9
|
jao1i |
|- ( ( N e. NN \/ N = 0 ) -> ( 0 < N -> N e. NN ) ) |
| 11 |
4 10
|
sylbi |
|- ( N e. NN0 -> ( 0 < N -> N e. NN ) ) |
| 12 |
11
|
imp |
|- ( ( N e. NN0 /\ 0 < N ) -> N e. NN ) |
| 13 |
3 12
|
impbii |
|- ( N e. NN <-> ( N e. NN0 /\ 0 < N ) ) |