Step |
Hyp |
Ref |
Expression |
1 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
2 |
|
nngt0 |
|- ( N e. NN -> 0 < N ) |
3 |
1 2
|
jca |
|- ( N e. NN -> ( N e. NN0 /\ 0 < N ) ) |
4 |
|
elnn0 |
|- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
5 |
|
breq2 |
|- ( N = 0 -> ( 0 < N <-> 0 < 0 ) ) |
6 |
|
0re |
|- 0 e. RR |
7 |
6
|
ltnri |
|- -. 0 < 0 |
8 |
7
|
pm2.21i |
|- ( 0 < 0 -> N e. NN ) |
9 |
5 8
|
syl6bi |
|- ( N = 0 -> ( 0 < N -> N e. NN ) ) |
10 |
9
|
jao1i |
|- ( ( N e. NN \/ N = 0 ) -> ( 0 < N -> N e. NN ) ) |
11 |
4 10
|
sylbi |
|- ( N e. NN0 -> ( 0 < N -> N e. NN ) ) |
12 |
11
|
imp |
|- ( ( N e. NN0 /\ 0 < N ) -> N e. NN ) |
13 |
3 12
|
impbii |
|- ( N e. NN <-> ( N e. NN0 /\ 0 < N ) ) |