Step |
Hyp |
Ref |
Expression |
1 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
2 |
|
nnge1 |
|- ( N e. NN -> 1 <_ N ) |
3 |
1 2
|
jca |
|- ( N e. NN -> ( N e. NN0 /\ 1 <_ N ) ) |
4 |
|
0lt1 |
|- 0 < 1 |
5 |
|
0re |
|- 0 e. RR |
6 |
|
1re |
|- 1 e. RR |
7 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
8 |
|
ltletr |
|- ( ( 0 e. RR /\ 1 e. RR /\ N e. RR ) -> ( ( 0 < 1 /\ 1 <_ N ) -> 0 < N ) ) |
9 |
5 6 7 8
|
mp3an12i |
|- ( N e. NN0 -> ( ( 0 < 1 /\ 1 <_ N ) -> 0 < N ) ) |
10 |
4 9
|
mpani |
|- ( N e. NN0 -> ( 1 <_ N -> 0 < N ) ) |
11 |
10
|
imdistani |
|- ( ( N e. NN0 /\ 1 <_ N ) -> ( N e. NN0 /\ 0 < N ) ) |
12 |
|
elnnnn0b |
|- ( N e. NN <-> ( N e. NN0 /\ 0 < N ) ) |
13 |
11 12
|
sylibr |
|- ( ( N e. NN0 /\ 1 <_ N ) -> N e. NN ) |
14 |
3 13
|
impbii |
|- ( N e. NN <-> ( N e. NN0 /\ 1 <_ N ) ) |