| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
| 2 |
|
orc |
|- ( N e. NN -> ( N e. NN \/ ( -u N e. NN \/ N = 0 ) ) ) |
| 3 |
|
nngt0 |
|- ( N e. NN -> 0 < N ) |
| 4 |
1 2 3
|
jca31 |
|- ( N e. NN -> ( ( N e. RR /\ ( N e. NN \/ ( -u N e. NN \/ N = 0 ) ) ) /\ 0 < N ) ) |
| 5 |
|
idd |
|- ( ( N e. RR /\ 0 < N ) -> ( N e. NN -> N e. NN ) ) |
| 6 |
|
lt0neg2 |
|- ( N e. RR -> ( 0 < N <-> -u N < 0 ) ) |
| 7 |
|
renegcl |
|- ( N e. RR -> -u N e. RR ) |
| 8 |
|
0re |
|- 0 e. RR |
| 9 |
|
ltnsym |
|- ( ( -u N e. RR /\ 0 e. RR ) -> ( -u N < 0 -> -. 0 < -u N ) ) |
| 10 |
7 8 9
|
sylancl |
|- ( N e. RR -> ( -u N < 0 -> -. 0 < -u N ) ) |
| 11 |
6 10
|
sylbid |
|- ( N e. RR -> ( 0 < N -> -. 0 < -u N ) ) |
| 12 |
11
|
imp |
|- ( ( N e. RR /\ 0 < N ) -> -. 0 < -u N ) |
| 13 |
|
nngt0 |
|- ( -u N e. NN -> 0 < -u N ) |
| 14 |
12 13
|
nsyl |
|- ( ( N e. RR /\ 0 < N ) -> -. -u N e. NN ) |
| 15 |
|
gt0ne0 |
|- ( ( N e. RR /\ 0 < N ) -> N =/= 0 ) |
| 16 |
15
|
neneqd |
|- ( ( N e. RR /\ 0 < N ) -> -. N = 0 ) |
| 17 |
|
ioran |
|- ( -. ( -u N e. NN \/ N = 0 ) <-> ( -. -u N e. NN /\ -. N = 0 ) ) |
| 18 |
14 16 17
|
sylanbrc |
|- ( ( N e. RR /\ 0 < N ) -> -. ( -u N e. NN \/ N = 0 ) ) |
| 19 |
18
|
pm2.21d |
|- ( ( N e. RR /\ 0 < N ) -> ( ( -u N e. NN \/ N = 0 ) -> N e. NN ) ) |
| 20 |
5 19
|
jaod |
|- ( ( N e. RR /\ 0 < N ) -> ( ( N e. NN \/ ( -u N e. NN \/ N = 0 ) ) -> N e. NN ) ) |
| 21 |
20
|
ex |
|- ( N e. RR -> ( 0 < N -> ( ( N e. NN \/ ( -u N e. NN \/ N = 0 ) ) -> N e. NN ) ) ) |
| 22 |
21
|
com23 |
|- ( N e. RR -> ( ( N e. NN \/ ( -u N e. NN \/ N = 0 ) ) -> ( 0 < N -> N e. NN ) ) ) |
| 23 |
22
|
imp31 |
|- ( ( ( N e. RR /\ ( N e. NN \/ ( -u N e. NN \/ N = 0 ) ) ) /\ 0 < N ) -> N e. NN ) |
| 24 |
4 23
|
impbii |
|- ( N e. NN <-> ( ( N e. RR /\ ( N e. NN \/ ( -u N e. NN \/ N = 0 ) ) ) /\ 0 < N ) ) |
| 25 |
|
elz |
|- ( N e. ZZ <-> ( N e. RR /\ ( N = 0 \/ N e. NN \/ -u N e. NN ) ) ) |
| 26 |
|
3orrot |
|- ( ( N = 0 \/ N e. NN \/ -u N e. NN ) <-> ( N e. NN \/ -u N e. NN \/ N = 0 ) ) |
| 27 |
|
3orass |
|- ( ( N e. NN \/ -u N e. NN \/ N = 0 ) <-> ( N e. NN \/ ( -u N e. NN \/ N = 0 ) ) ) |
| 28 |
26 27
|
bitri |
|- ( ( N = 0 \/ N e. NN \/ -u N e. NN ) <-> ( N e. NN \/ ( -u N e. NN \/ N = 0 ) ) ) |
| 29 |
28
|
anbi2i |
|- ( ( N e. RR /\ ( N = 0 \/ N e. NN \/ -u N e. NN ) ) <-> ( N e. RR /\ ( N e. NN \/ ( -u N e. NN \/ N = 0 ) ) ) ) |
| 30 |
25 29
|
bitri |
|- ( N e. ZZ <-> ( N e. RR /\ ( N e. NN \/ ( -u N e. NN \/ N = 0 ) ) ) ) |
| 31 |
30
|
anbi1i |
|- ( ( N e. ZZ /\ 0 < N ) <-> ( ( N e. RR /\ ( N e. NN \/ ( -u N e. NN \/ N = 0 ) ) ) /\ 0 < N ) ) |
| 32 |
24 31
|
bitr4i |
|- ( N e. NN <-> ( N e. ZZ /\ 0 < N ) ) |