Metamath Proof Explorer


Theorem elno

Description: Membership in the surreals. (Contributed by Scott Fenton, 11-Jun-2011) (Proof shortened by SF, 14-Apr-2012) Avoid ax-rep . (Revised by SN, 5-Jun-2025)

Ref Expression
Assertion elno
|- ( A e. No <-> E. x e. On A : x --> { 1o , 2o } )

Proof

Step Hyp Ref Expression
1 elex
 |-  ( A e. No -> A e. _V )
2 vex
 |-  x e. _V
3 prex
 |-  { 1o , 2o } e. _V
4 fex2
 |-  ( ( A : x --> { 1o , 2o } /\ x e. _V /\ { 1o , 2o } e. _V ) -> A e. _V )
5 2 3 4 mp3an23
 |-  ( A : x --> { 1o , 2o } -> A e. _V )
6 5 rexlimivw
 |-  ( E. x e. On A : x --> { 1o , 2o } -> A e. _V )
7 feq1
 |-  ( f = A -> ( f : x --> { 1o , 2o } <-> A : x --> { 1o , 2o } ) )
8 7 rexbidv
 |-  ( f = A -> ( E. x e. On f : x --> { 1o , 2o } <-> E. x e. On A : x --> { 1o , 2o } ) )
9 df-no
 |-  No = { f | E. x e. On f : x --> { 1o , 2o } }
10 8 9 elab2g
 |-  ( A e. _V -> ( A e. No <-> E. x e. On A : x --> { 1o , 2o } ) )
11 1 6 10 pm5.21nii
 |-  ( A e. No <-> E. x e. On A : x --> { 1o , 2o } )