Description: Sufficient condition for elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 21-Sep-2014) (Proof shortened by Mario Carneiro, 26-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elo1mpt.1 | |- ( ph -> A C_ RR ) |
|
elo1mpt.2 | |- ( ( ph /\ x e. A ) -> B e. CC ) |
||
elo1d.3 | |- ( ph -> C e. RR ) |
||
elo1d.4 | |- ( ph -> M e. RR ) |
||
elo1d.5 | |- ( ( ph /\ ( x e. A /\ C <_ x ) ) -> ( abs ` B ) <_ M ) |
||
Assertion | elo1d | |- ( ph -> ( x e. A |-> B ) e. O(1) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elo1mpt.1 | |- ( ph -> A C_ RR ) |
|
2 | elo1mpt.2 | |- ( ( ph /\ x e. A ) -> B e. CC ) |
|
3 | elo1d.3 | |- ( ph -> C e. RR ) |
|
4 | elo1d.4 | |- ( ph -> M e. RR ) |
|
5 | elo1d.5 | |- ( ( ph /\ ( x e. A /\ C <_ x ) ) -> ( abs ` B ) <_ M ) |
|
6 | 2 | abscld | |- ( ( ph /\ x e. A ) -> ( abs ` B ) e. RR ) |
7 | 1 6 3 4 5 | ello1d | |- ( ph -> ( x e. A |-> ( abs ` B ) ) e. <_O(1) ) |
8 | 2 | lo1o12 | |- ( ph -> ( ( x e. A |-> B ) e. O(1) <-> ( x e. A |-> ( abs ` B ) ) e. <_O(1) ) ) |
9 | 7 8 | mpbird | |- ( ph -> ( x e. A |-> B ) e. O(1) ) |