| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ere |  |-  _e e. RR | 
						
							| 2 | 1 | recni |  |-  _e e. CC | 
						
							| 3 |  | ene0 |  |-  _e =/= 0 | 
						
							| 4 |  | ene1 |  |-  _e =/= 1 | 
						
							| 5 |  | eldifpr |  |-  ( _e e. ( CC \ { 0 , 1 } ) <-> ( _e e. CC /\ _e =/= 0 /\ _e =/= 1 ) ) | 
						
							| 6 | 2 3 4 5 | mpbir3an |  |-  _e e. ( CC \ { 0 , 1 } ) | 
						
							| 7 |  | logbval |  |-  ( ( _e e. ( CC \ { 0 , 1 } ) /\ A e. ( CC \ { 0 } ) ) -> ( _e logb A ) = ( ( log ` A ) / ( log ` _e ) ) ) | 
						
							| 8 | 6 7 | mpan |  |-  ( A e. ( CC \ { 0 } ) -> ( _e logb A ) = ( ( log ` A ) / ( log ` _e ) ) ) | 
						
							| 9 |  | loge |  |-  ( log ` _e ) = 1 | 
						
							| 10 | 9 | oveq2i |  |-  ( ( log ` A ) / ( log ` _e ) ) = ( ( log ` A ) / 1 ) | 
						
							| 11 |  | eldifsn |  |-  ( A e. ( CC \ { 0 } ) <-> ( A e. CC /\ A =/= 0 ) ) | 
						
							| 12 |  | logcl |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. CC ) | 
						
							| 13 | 11 12 | sylbi |  |-  ( A e. ( CC \ { 0 } ) -> ( log ` A ) e. CC ) | 
						
							| 14 | 13 | div1d |  |-  ( A e. ( CC \ { 0 } ) -> ( ( log ` A ) / 1 ) = ( log ` A ) ) | 
						
							| 15 | 10 14 | eqtrid |  |-  ( A e. ( CC \ { 0 } ) -> ( ( log ` A ) / ( log ` _e ) ) = ( log ` A ) ) | 
						
							| 16 | 8 15 | eqtrd |  |-  ( A e. ( CC \ { 0 } ) -> ( _e logb A ) = ( log ` A ) ) |