Description: Membership in omega. The left conjunct can be eliminated if we assume the Axiom of Infinity; see elom3 . (Contributed by NM, 15-May-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | elom | |- ( A e. _om <-> ( A e. On /\ A. x ( Lim x -> A e. x ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 | |- ( y = A -> ( y e. x <-> A e. x ) ) |
|
2 | 1 | imbi2d | |- ( y = A -> ( ( Lim x -> y e. x ) <-> ( Lim x -> A e. x ) ) ) |
3 | 2 | albidv | |- ( y = A -> ( A. x ( Lim x -> y e. x ) <-> A. x ( Lim x -> A e. x ) ) ) |
4 | df-om | |- _om = { y e. On | A. x ( Lim x -> y e. x ) } |
|
5 | 3 4 | elrab2 | |- ( A e. _om <-> ( A e. On /\ A. x ( Lim x -> A e. x ) ) ) |