| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elom |
|- ( A e. _om <-> ( A e. On /\ A. x ( Lim x -> A e. x ) ) ) |
| 2 |
|
limom |
|- Lim _om |
| 3 |
|
omex |
|- _om e. _V |
| 4 |
|
limeq |
|- ( x = _om -> ( Lim x <-> Lim _om ) ) |
| 5 |
|
eleq2 |
|- ( x = _om -> ( A e. x <-> A e. _om ) ) |
| 6 |
4 5
|
imbi12d |
|- ( x = _om -> ( ( Lim x -> A e. x ) <-> ( Lim _om -> A e. _om ) ) ) |
| 7 |
3 6
|
spcv |
|- ( A. x ( Lim x -> A e. x ) -> ( Lim _om -> A e. _om ) ) |
| 8 |
2 7
|
mpi |
|- ( A. x ( Lim x -> A e. x ) -> A e. _om ) |
| 9 |
|
nnon |
|- ( A e. _om -> A e. On ) |
| 10 |
8 9
|
syl |
|- ( A. x ( Lim x -> A e. x ) -> A e. On ) |
| 11 |
10
|
pm4.71ri |
|- ( A. x ( Lim x -> A e. x ) <-> ( A e. On /\ A. x ( Lim x -> A e. x ) ) ) |
| 12 |
1 11
|
bitr4i |
|- ( A e. _om <-> A. x ( Lim x -> A e. x ) ) |