Description: An ordinal number is an ordinal set. (Contributed by NM, 8-Feb-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | elon2 | |- ( A e. On <-> ( Ord A /\ A e. _V ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex | |- ( A e. On -> A e. _V ) |
|
2 | elong | |- ( A e. _V -> ( A e. On <-> Ord A ) ) |
|
3 | 1 2 | biadanii | |- ( A e. On <-> ( A e. _V /\ Ord A ) ) |
4 | 3 | biancomi | |- ( A e. On <-> ( Ord A /\ A e. _V ) ) |