Metamath Proof Explorer


Theorem elop

Description: Characterization of the elements of an ordered pair. Exercise 3 of TakeutiZaring p. 15. (Contributed by NM, 15-Jul-1993) (Revised by Mario Carneiro, 26-Apr-2015) Remove an extraneous hypothesis. (Revised by BJ, 25-Dec-2020) (Avoid depending on this detail.)

Ref Expression
Hypotheses elop.1
|- B e. _V
elop.2
|- C e. _V
Assertion elop
|- ( A e. <. B , C >. <-> ( A = { B } \/ A = { B , C } ) )

Proof

Step Hyp Ref Expression
1 elop.1
 |-  B e. _V
2 elop.2
 |-  C e. _V
3 elopg
 |-  ( ( B e. _V /\ C e. _V ) -> ( A e. <. B , C >. <-> ( A = { B } \/ A = { B , C } ) ) )
4 1 2 3 mp2an
 |-  ( A e. <. B , C >. <-> ( A = { B } \/ A = { B , C } ) )