Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
|- ( A e. { <. x , y >. | ph } -> A e. _V ) |
2 |
|
opex |
|- <. x , y >. e. _V |
3 |
|
eleq1 |
|- ( A = <. x , y >. -> ( A e. _V <-> <. x , y >. e. _V ) ) |
4 |
2 3
|
mpbiri |
|- ( A = <. x , y >. -> A e. _V ) |
5 |
4
|
adantr |
|- ( ( A = <. x , y >. /\ ph ) -> A e. _V ) |
6 |
5
|
exlimivv |
|- ( E. x E. y ( A = <. x , y >. /\ ph ) -> A e. _V ) |
7 |
|
elopabw |
|- ( A e. _V -> ( A e. { <. x , y >. | ph } <-> E. x E. y ( A = <. x , y >. /\ ph ) ) ) |
8 |
1 6 7
|
pm5.21nii |
|- ( A e. { <. x , y >. | ph } <-> E. x E. y ( A = <. x , y >. /\ ph ) ) |