Description: Membership in an ordered-pair class abstraction. (Contributed by NM, 25-Feb-2014) (Revised by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | copsex2ga.1 | |- ( A = <. x , y >. -> ( ph <-> ps ) ) |
|
| Assertion | elopaba | |- ( A e. { <. x , y >. | ps } <-> ( A e. ( _V X. _V ) /\ ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | copsex2ga.1 | |- ( A = <. x , y >. -> ( ph <-> ps ) ) |
|
| 2 | elopab | |- ( A e. { <. x , y >. | ps } <-> E. x E. y ( A = <. x , y >. /\ ps ) ) |
|
| 3 | 1 | copsex2gb | |- ( E. x E. y ( A = <. x , y >. /\ ps ) <-> ( A e. ( _V X. _V ) /\ ph ) ) |
| 4 | 2 3 | bitri | |- ( A e. { <. x , y >. | ps } <-> ( A e. ( _V X. _V ) /\ ph ) ) |