Step |
Hyp |
Ref |
Expression |
1 |
|
elopab |
|- ( A e. { <. x , y >. | x R y } <-> E. x E. y ( A = <. x , y >. /\ x R y ) ) |
2 |
|
df-br |
|- ( x R y <-> <. x , y >. e. R ) |
3 |
2
|
biimpi |
|- ( x R y -> <. x , y >. e. R ) |
4 |
|
eleq1 |
|- ( A = <. x , y >. -> ( A e. R <-> <. x , y >. e. R ) ) |
5 |
3 4
|
syl5ibr |
|- ( A = <. x , y >. -> ( x R y -> A e. R ) ) |
6 |
5
|
imp |
|- ( ( A = <. x , y >. /\ x R y ) -> A e. R ) |
7 |
6
|
exlimivv |
|- ( E. x E. y ( A = <. x , y >. /\ x R y ) -> A e. R ) |
8 |
1 7
|
sylbi |
|- ( A e. { <. x , y >. | x R y } -> A e. R ) |