Metamath Proof Explorer


Theorem elopabr

Description: Membership in an ordered-pair class abstraction defined by a binary relation. (Contributed by AV, 16-Feb-2021)

Ref Expression
Assertion elopabr
|- ( A e. { <. x , y >. | x R y } -> A e. R )

Proof

Step Hyp Ref Expression
1 elopab
 |-  ( A e. { <. x , y >. | x R y } <-> E. x E. y ( A = <. x , y >. /\ x R y ) )
2 df-br
 |-  ( x R y <-> <. x , y >. e. R )
3 2 biimpi
 |-  ( x R y -> <. x , y >. e. R )
4 eleq1
 |-  ( A = <. x , y >. -> ( A e. R <-> <. x , y >. e. R ) )
5 3 4 syl5ibr
 |-  ( A = <. x , y >. -> ( x R y -> A e. R ) )
6 5 imp
 |-  ( ( A = <. x , y >. /\ x R y ) -> A e. R )
7 6 exlimivv
 |-  ( E. x E. y ( A = <. x , y >. /\ x R y ) -> A e. R )
8 1 7 sylbi
 |-  ( A e. { <. x , y >. | x R y } -> A e. R )