| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elopab |  |-  ( A e. { <. x , y >. | x R y } <-> E. x E. y ( A = <. x , y >. /\ x R y ) ) | 
						
							| 2 |  | df-br |  |-  ( x R y <-> <. x , y >. e. R ) | 
						
							| 3 | 2 | biimpi |  |-  ( x R y -> <. x , y >. e. R ) | 
						
							| 4 |  | eleq1 |  |-  ( A = <. x , y >. -> ( A e. R <-> <. x , y >. e. R ) ) | 
						
							| 5 | 3 4 | imbitrrid |  |-  ( A = <. x , y >. -> ( x R y -> A e. R ) ) | 
						
							| 6 | 5 | imp |  |-  ( ( A = <. x , y >. /\ x R y ) -> A e. R ) | 
						
							| 7 | 6 | exlimivv |  |-  ( E. x E. y ( A = <. x , y >. /\ x R y ) -> A e. R ) | 
						
							| 8 | 1 7 | sylbi |  |-  ( A e. { <. x , y >. | x R y } -> A e. R ) |