Metamath Proof Explorer


Theorem elopabran

Description: Membership in an ordered-pair class abstraction defined by a restricted binary relation. (Contributed by AV, 16-Feb-2021)

Ref Expression
Assertion elopabran
|- ( A e. { <. x , y >. | ( x R y /\ ps ) } -> A e. R )

Proof

Step Hyp Ref Expression
1 simpl
 |-  ( ( x R y /\ ps ) -> x R y )
2 1 ssopab2i
 |-  { <. x , y >. | ( x R y /\ ps ) } C_ { <. x , y >. | x R y }
3 2 sseli
 |-  ( A e. { <. x , y >. | ( x R y /\ ps ) } -> A e. { <. x , y >. | x R y } )
4 elopabr
 |-  ( A e. { <. x , y >. | x R y } -> A e. R )
5 3 4 syl
 |-  ( A e. { <. x , y >. | ( x R y /\ ps ) } -> A e. R )