Metamath Proof Explorer


Theorem elopaelxp

Description: Membership in an ordered-pair class abstraction implies membership in a Cartesian product. (Contributed by Alexander van der Vekens, 23-Jun-2018)

Ref Expression
Assertion elopaelxp
|- ( A e. { <. x , y >. | ps } -> A e. ( _V X. _V ) )

Proof

Step Hyp Ref Expression
1 simpl
 |-  ( ( A = <. x , y >. /\ ps ) -> A = <. x , y >. )
2 1 2eximi
 |-  ( E. x E. y ( A = <. x , y >. /\ ps ) -> E. x E. y A = <. x , y >. )
3 elopab
 |-  ( A e. { <. x , y >. | ps } <-> E. x E. y ( A = <. x , y >. /\ ps ) )
4 elvv
 |-  ( A e. ( _V X. _V ) <-> E. x E. y A = <. x , y >. )
5 2 3 4 3imtr4i
 |-  ( A e. { <. x , y >. | ps } -> A e. ( _V X. _V ) )