Description: Membership in an ordered-pair class abstraction implies membership in a Cartesian product. (Contributed by Alexander van der Vekens, 23-Jun-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | elopaelxp | |- ( A e. { <. x , y >. | ps } -> A e. ( _V X. _V ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |- ( ( A = <. x , y >. /\ ps ) -> A = <. x , y >. ) |
|
2 | 1 | 2eximi | |- ( E. x E. y ( A = <. x , y >. /\ ps ) -> E. x E. y A = <. x , y >. ) |
3 | elopab | |- ( A e. { <. x , y >. | ps } <-> E. x E. y ( A = <. x , y >. /\ ps ) ) |
|
4 | elvv | |- ( A e. ( _V X. _V ) <-> E. x E. y A = <. x , y >. ) |
|
5 | 2 3 4 | 3imtr4i | |- ( A e. { <. x , y >. | ps } -> A e. ( _V X. _V ) ) |