Description: The law of concretion for operation class abstraction. Compare elopab . (Contributed by NM, 14-Sep-1999) (Revised by David Abernethy, 19-Jun-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eloprabg.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
eloprabg.2 | |- ( y = B -> ( ps <-> ch ) ) |
||
eloprabg.3 | |- ( z = C -> ( ch <-> th ) ) |
||
Assertion | eloprabg | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( <. <. A , B >. , C >. e. { <. <. x , y >. , z >. | ph } <-> th ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloprabg.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
2 | eloprabg.2 | |- ( y = B -> ( ps <-> ch ) ) |
|
3 | eloprabg.3 | |- ( z = C -> ( ch <-> th ) ) |
|
4 | 1 2 3 | syl3an9b | |- ( ( x = A /\ y = B /\ z = C ) -> ( ph <-> th ) ) |
5 | 4 | eloprabga | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( <. <. A , B >. , C >. e. { <. <. x , y >. , z >. | ph } <-> th ) ) |