Metamath Proof Explorer


Theorem eloprabg

Description: The law of concretion for operation class abstraction. Compare elopab . (Contributed by NM, 14-Sep-1999) (Revised by David Abernethy, 19-Jun-2012)

Ref Expression
Hypotheses eloprabg.1
|- ( x = A -> ( ph <-> ps ) )
eloprabg.2
|- ( y = B -> ( ps <-> ch ) )
eloprabg.3
|- ( z = C -> ( ch <-> th ) )
Assertion eloprabg
|- ( ( A e. V /\ B e. W /\ C e. X ) -> ( <. <. A , B >. , C >. e. { <. <. x , y >. , z >. | ph } <-> th ) )

Proof

Step Hyp Ref Expression
1 eloprabg.1
 |-  ( x = A -> ( ph <-> ps ) )
2 eloprabg.2
 |-  ( y = B -> ( ps <-> ch ) )
3 eloprabg.3
 |-  ( z = C -> ( ch <-> th ) )
4 1 2 3 syl3an9b
 |-  ( ( x = A /\ y = B /\ z = C ) -> ( ph <-> th ) )
5 4 eloprabga
 |-  ( ( A e. V /\ B e. W /\ C e. X ) -> ( <. <. A , B >. , C >. e. { <. <. x , y >. , z >. | ph } <-> th ) )