Step |
Hyp |
Ref |
Expression |
1 |
|
eloprabga.1 |
|- ( ( x = A /\ y = B /\ z = C ) -> ( ph <-> ps ) ) |
2 |
|
elex |
|- ( A e. V -> A e. _V ) |
3 |
|
elex |
|- ( B e. W -> B e. _V ) |
4 |
|
elex |
|- ( C e. X -> C e. _V ) |
5 |
|
opex |
|- <. <. A , B >. , C >. e. _V |
6 |
|
simpr |
|- ( ( ( A e. _V /\ B e. _V /\ C e. _V ) /\ w = <. <. A , B >. , C >. ) -> w = <. <. A , B >. , C >. ) |
7 |
6
|
eqeq1d |
|- ( ( ( A e. _V /\ B e. _V /\ C e. _V ) /\ w = <. <. A , B >. , C >. ) -> ( w = <. <. x , y >. , z >. <-> <. <. A , B >. , C >. = <. <. x , y >. , z >. ) ) |
8 |
|
eqcom |
|- ( <. <. A , B >. , C >. = <. <. x , y >. , z >. <-> <. <. x , y >. , z >. = <. <. A , B >. , C >. ) |
9 |
|
vex |
|- x e. _V |
10 |
|
vex |
|- y e. _V |
11 |
|
vex |
|- z e. _V |
12 |
9 10 11
|
otth2 |
|- ( <. <. x , y >. , z >. = <. <. A , B >. , C >. <-> ( x = A /\ y = B /\ z = C ) ) |
13 |
8 12
|
bitri |
|- ( <. <. A , B >. , C >. = <. <. x , y >. , z >. <-> ( x = A /\ y = B /\ z = C ) ) |
14 |
7 13
|
bitrdi |
|- ( ( ( A e. _V /\ B e. _V /\ C e. _V ) /\ w = <. <. A , B >. , C >. ) -> ( w = <. <. x , y >. , z >. <-> ( x = A /\ y = B /\ z = C ) ) ) |
15 |
14
|
anbi1d |
|- ( ( ( A e. _V /\ B e. _V /\ C e. _V ) /\ w = <. <. A , B >. , C >. ) -> ( ( w = <. <. x , y >. , z >. /\ ph ) <-> ( ( x = A /\ y = B /\ z = C ) /\ ph ) ) ) |
16 |
1
|
pm5.32i |
|- ( ( ( x = A /\ y = B /\ z = C ) /\ ph ) <-> ( ( x = A /\ y = B /\ z = C ) /\ ps ) ) |
17 |
15 16
|
bitrdi |
|- ( ( ( A e. _V /\ B e. _V /\ C e. _V ) /\ w = <. <. A , B >. , C >. ) -> ( ( w = <. <. x , y >. , z >. /\ ph ) <-> ( ( x = A /\ y = B /\ z = C ) /\ ps ) ) ) |
18 |
17
|
3exbidv |
|- ( ( ( A e. _V /\ B e. _V /\ C e. _V ) /\ w = <. <. A , B >. , C >. ) -> ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) <-> E. x E. y E. z ( ( x = A /\ y = B /\ z = C ) /\ ps ) ) ) |
19 |
|
df-oprab |
|- { <. <. x , y >. , z >. | ph } = { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) } |
20 |
19
|
eleq2i |
|- ( w e. { <. <. x , y >. , z >. | ph } <-> w e. { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) } ) |
21 |
|
abid |
|- ( w e. { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) } <-> E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) ) |
22 |
20 21
|
bitr2i |
|- ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) <-> w e. { <. <. x , y >. , z >. | ph } ) |
23 |
|
eleq1 |
|- ( w = <. <. A , B >. , C >. -> ( w e. { <. <. x , y >. , z >. | ph } <-> <. <. A , B >. , C >. e. { <. <. x , y >. , z >. | ph } ) ) |
24 |
22 23
|
bitrid |
|- ( w = <. <. A , B >. , C >. -> ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) <-> <. <. A , B >. , C >. e. { <. <. x , y >. , z >. | ph } ) ) |
25 |
24
|
adantl |
|- ( ( ( A e. _V /\ B e. _V /\ C e. _V ) /\ w = <. <. A , B >. , C >. ) -> ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ ph ) <-> <. <. A , B >. , C >. e. { <. <. x , y >. , z >. | ph } ) ) |
26 |
|
19.41vvv |
|- ( E. x E. y E. z ( ( x = A /\ y = B /\ z = C ) /\ ps ) <-> ( E. x E. y E. z ( x = A /\ y = B /\ z = C ) /\ ps ) ) |
27 |
|
elisset |
|- ( A e. _V -> E. x x = A ) |
28 |
|
elisset |
|- ( B e. _V -> E. y y = B ) |
29 |
|
elisset |
|- ( C e. _V -> E. z z = C ) |
30 |
27 28 29
|
3anim123i |
|- ( ( A e. _V /\ B e. _V /\ C e. _V ) -> ( E. x x = A /\ E. y y = B /\ E. z z = C ) ) |
31 |
|
3exdistr |
|- ( E. x E. y E. z ( x = A /\ y = B /\ z = C ) <-> E. x ( x = A /\ E. y ( y = B /\ E. z z = C ) ) ) |
32 |
|
19.41v |
|- ( E. x ( x = A /\ E. y ( y = B /\ E. z z = C ) ) <-> ( E. x x = A /\ E. y ( y = B /\ E. z z = C ) ) ) |
33 |
|
19.41v |
|- ( E. y ( y = B /\ E. z z = C ) <-> ( E. y y = B /\ E. z z = C ) ) |
34 |
33
|
anbi2i |
|- ( ( E. x x = A /\ E. y ( y = B /\ E. z z = C ) ) <-> ( E. x x = A /\ ( E. y y = B /\ E. z z = C ) ) ) |
35 |
31 32 34
|
3bitri |
|- ( E. x E. y E. z ( x = A /\ y = B /\ z = C ) <-> ( E. x x = A /\ ( E. y y = B /\ E. z z = C ) ) ) |
36 |
|
3anass |
|- ( ( E. x x = A /\ E. y y = B /\ E. z z = C ) <-> ( E. x x = A /\ ( E. y y = B /\ E. z z = C ) ) ) |
37 |
35 36
|
bitr4i |
|- ( E. x E. y E. z ( x = A /\ y = B /\ z = C ) <-> ( E. x x = A /\ E. y y = B /\ E. z z = C ) ) |
38 |
30 37
|
sylibr |
|- ( ( A e. _V /\ B e. _V /\ C e. _V ) -> E. x E. y E. z ( x = A /\ y = B /\ z = C ) ) |
39 |
38
|
biantrurd |
|- ( ( A e. _V /\ B e. _V /\ C e. _V ) -> ( ps <-> ( E. x E. y E. z ( x = A /\ y = B /\ z = C ) /\ ps ) ) ) |
40 |
26 39
|
bitr4id |
|- ( ( A e. _V /\ B e. _V /\ C e. _V ) -> ( E. x E. y E. z ( ( x = A /\ y = B /\ z = C ) /\ ps ) <-> ps ) ) |
41 |
40
|
adantr |
|- ( ( ( A e. _V /\ B e. _V /\ C e. _V ) /\ w = <. <. A , B >. , C >. ) -> ( E. x E. y E. z ( ( x = A /\ y = B /\ z = C ) /\ ps ) <-> ps ) ) |
42 |
18 25 41
|
3bitr3d |
|- ( ( ( A e. _V /\ B e. _V /\ C e. _V ) /\ w = <. <. A , B >. , C >. ) -> ( <. <. A , B >. , C >. e. { <. <. x , y >. , z >. | ph } <-> ps ) ) |
43 |
42
|
expcom |
|- ( w = <. <. A , B >. , C >. -> ( ( A e. _V /\ B e. _V /\ C e. _V ) -> ( <. <. A , B >. , C >. e. { <. <. x , y >. , z >. | ph } <-> ps ) ) ) |
44 |
5 43
|
vtocle |
|- ( ( A e. _V /\ B e. _V /\ C e. _V ) -> ( <. <. A , B >. , C >. e. { <. <. x , y >. , z >. | ph } <-> ps ) ) |
45 |
2 3 4 44
|
syl3an |
|- ( ( A e. V /\ B e. W /\ C e. X ) -> ( <. <. A , B >. , C >. e. { <. <. x , y >. , z >. | ph } <-> ps ) ) |