Metamath Proof Explorer


Theorem elovmpod

Description: Utility lemma for two-parameter classes. (Contributed by Stefan O'Rear, 21-Jan-2015) Variant of elovmpo in deduction form. (Revised by AV, 20-Apr-2025)

Ref Expression
Hypotheses elovmpod.o
|- O = ( a e. A , b e. B |-> C )
elovmpod.x
|- ( ph -> X e. A )
elovmpod.y
|- ( ph -> Y e. B )
elovmpod.d
|- ( ph -> D e. V )
elovmpod.c
|- ( ( a = X /\ b = Y ) -> C = D )
Assertion elovmpod
|- ( ph -> ( E e. ( X O Y ) <-> E e. D ) )

Proof

Step Hyp Ref Expression
1 elovmpod.o
 |-  O = ( a e. A , b e. B |-> C )
2 elovmpod.x
 |-  ( ph -> X e. A )
3 elovmpod.y
 |-  ( ph -> Y e. B )
4 elovmpod.d
 |-  ( ph -> D e. V )
5 elovmpod.c
 |-  ( ( a = X /\ b = Y ) -> C = D )
6 1 a1i
 |-  ( ph -> O = ( a e. A , b e. B |-> C ) )
7 5 adantl
 |-  ( ( ph /\ ( a = X /\ b = Y ) ) -> C = D )
8 6 7 2 3 4 ovmpod
 |-  ( ph -> ( X O Y ) = D )
9 8 eleq2d
 |-  ( ph -> ( E e. ( X O Y ) <-> E e. D ) )