| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elovmptnn0wrd.o |
|- O = ( v e. _V , y e. _V |-> ( n e. NN0 |-> { z e. Word v | ph } ) ) |
| 2 |
1
|
elovmpt3imp |
|- ( Z e. ( ( V O Y ) ` N ) -> ( V e. _V /\ Y e. _V ) ) |
| 3 |
|
wrdexg |
|- ( V e. _V -> Word V e. _V ) |
| 4 |
3
|
adantr |
|- ( ( V e. _V /\ Y e. _V ) -> Word V e. _V ) |
| 5 |
2 4
|
syl |
|- ( Z e. ( ( V O Y ) ` N ) -> Word V e. _V ) |
| 6 |
|
nn0ex |
|- NN0 e. _V |
| 7 |
5 6
|
jctil |
|- ( Z e. ( ( V O Y ) ` N ) -> ( NN0 e. _V /\ Word V e. _V ) ) |
| 8 |
|
eqidd |
|- ( ( v = V /\ y = Y ) -> NN0 = NN0 ) |
| 9 |
|
wrdeq |
|- ( v = V -> Word v = Word V ) |
| 10 |
9
|
adantr |
|- ( ( v = V /\ y = Y ) -> Word v = Word V ) |
| 11 |
1 8 10
|
elovmpt3rab1 |
|- ( ( NN0 e. _V /\ Word V e. _V ) -> ( Z e. ( ( V O Y ) ` N ) -> ( ( V e. _V /\ Y e. _V ) /\ ( N e. NN0 /\ Z e. Word V ) ) ) ) |
| 12 |
7 11
|
mpcom |
|- ( Z e. ( ( V O Y ) ` N ) -> ( ( V e. _V /\ Y e. _V ) /\ ( N e. NN0 /\ Z e. Word V ) ) ) |