Metamath Proof Explorer


Theorem elovolmlem

Description: Lemma for elovolm and related theorems. (Contributed by BJ, 23-Jul-2022)

Ref Expression
Assertion elovolmlem
|- ( F e. ( ( A i^i ( RR X. RR ) ) ^m NN ) <-> F : NN --> ( A i^i ( RR X. RR ) ) )

Proof

Step Hyp Ref Expression
1 reex
 |-  RR e. _V
2 1 1 xpex
 |-  ( RR X. RR ) e. _V
3 2 inex2
 |-  ( A i^i ( RR X. RR ) ) e. _V
4 nnex
 |-  NN e. _V
5 3 4 elmap
 |-  ( F e. ( ( A i^i ( RR X. RR ) ) ^m NN ) <-> F : NN --> ( A i^i ( RR X. RR ) ) )