Step |
Hyp |
Ref |
Expression |
1 |
|
paddfval.l |
|- .<_ = ( le ` K ) |
2 |
|
paddfval.j |
|- .\/ = ( join ` K ) |
3 |
|
paddfval.a |
|- A = ( Atoms ` K ) |
4 |
|
paddfval.p |
|- .+ = ( +P ` K ) |
5 |
|
simpl1 |
|- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ X =/= (/) ) -> K e. Lat ) |
6 |
|
simpl2 |
|- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ X =/= (/) ) -> X C_ A ) |
7 |
|
simpl3 |
|- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ X =/= (/) ) -> Q e. A ) |
8 |
7
|
snssd |
|- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ X =/= (/) ) -> { Q } C_ A ) |
9 |
|
simpr |
|- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ X =/= (/) ) -> X =/= (/) ) |
10 |
7
|
snn0d |
|- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ X =/= (/) ) -> { Q } =/= (/) ) |
11 |
1 2 3 4
|
elpaddn0 |
|- ( ( ( K e. Lat /\ X C_ A /\ { Q } C_ A ) /\ ( X =/= (/) /\ { Q } =/= (/) ) ) -> ( S e. ( X .+ { Q } ) <-> ( S e. A /\ E. p e. X E. r e. { Q } S .<_ ( p .\/ r ) ) ) ) |
12 |
5 6 8 9 10 11
|
syl32anc |
|- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ X =/= (/) ) -> ( S e. ( X .+ { Q } ) <-> ( S e. A /\ E. p e. X E. r e. { Q } S .<_ ( p .\/ r ) ) ) ) |
13 |
|
oveq2 |
|- ( r = Q -> ( p .\/ r ) = ( p .\/ Q ) ) |
14 |
13
|
breq2d |
|- ( r = Q -> ( S .<_ ( p .\/ r ) <-> S .<_ ( p .\/ Q ) ) ) |
15 |
14
|
rexsng |
|- ( Q e. A -> ( E. r e. { Q } S .<_ ( p .\/ r ) <-> S .<_ ( p .\/ Q ) ) ) |
16 |
7 15
|
syl |
|- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ X =/= (/) ) -> ( E. r e. { Q } S .<_ ( p .\/ r ) <-> S .<_ ( p .\/ Q ) ) ) |
17 |
16
|
rexbidv |
|- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ X =/= (/) ) -> ( E. p e. X E. r e. { Q } S .<_ ( p .\/ r ) <-> E. p e. X S .<_ ( p .\/ Q ) ) ) |
18 |
17
|
anbi2d |
|- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ X =/= (/) ) -> ( ( S e. A /\ E. p e. X E. r e. { Q } S .<_ ( p .\/ r ) ) <-> ( S e. A /\ E. p e. X S .<_ ( p .\/ Q ) ) ) ) |
19 |
12 18
|
bitrd |
|- ( ( ( K e. Lat /\ X C_ A /\ Q e. A ) /\ X =/= (/) ) -> ( S e. ( X .+ { Q } ) <-> ( S e. A /\ E. p e. X S .<_ ( p .\/ Q ) ) ) ) |