Step |
Hyp |
Ref |
Expression |
1 |
|
paddfval.l |
|- .<_ = ( le ` K ) |
2 |
|
paddfval.j |
|- .\/ = ( join ` K ) |
3 |
|
paddfval.a |
|- A = ( Atoms ` K ) |
4 |
|
paddfval.p |
|- .+ = ( +P ` K ) |
5 |
|
simp3l |
|- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( Q e. X /\ R e. Y ) /\ ( S e. A /\ S .<_ ( Q .\/ R ) ) ) -> S e. A ) |
6 |
|
simp2l |
|- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( Q e. X /\ R e. Y ) /\ ( S e. A /\ S .<_ ( Q .\/ R ) ) ) -> Q e. X ) |
7 |
|
simp2r |
|- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( Q e. X /\ R e. Y ) /\ ( S e. A /\ S .<_ ( Q .\/ R ) ) ) -> R e. Y ) |
8 |
|
simp3r |
|- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( Q e. X /\ R e. Y ) /\ ( S e. A /\ S .<_ ( Q .\/ R ) ) ) -> S .<_ ( Q .\/ R ) ) |
9 |
|
oveq1 |
|- ( q = Q -> ( q .\/ r ) = ( Q .\/ r ) ) |
10 |
9
|
breq2d |
|- ( q = Q -> ( S .<_ ( q .\/ r ) <-> S .<_ ( Q .\/ r ) ) ) |
11 |
|
oveq2 |
|- ( r = R -> ( Q .\/ r ) = ( Q .\/ R ) ) |
12 |
11
|
breq2d |
|- ( r = R -> ( S .<_ ( Q .\/ r ) <-> S .<_ ( Q .\/ R ) ) ) |
13 |
10 12
|
rspc2ev |
|- ( ( Q e. X /\ R e. Y /\ S .<_ ( Q .\/ R ) ) -> E. q e. X E. r e. Y S .<_ ( q .\/ r ) ) |
14 |
6 7 8 13
|
syl3anc |
|- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( Q e. X /\ R e. Y ) /\ ( S e. A /\ S .<_ ( Q .\/ R ) ) ) -> E. q e. X E. r e. Y S .<_ ( q .\/ r ) ) |
15 |
|
ne0i |
|- ( Q e. X -> X =/= (/) ) |
16 |
|
ne0i |
|- ( R e. Y -> Y =/= (/) ) |
17 |
15 16
|
anim12i |
|- ( ( Q e. X /\ R e. Y ) -> ( X =/= (/) /\ Y =/= (/) ) ) |
18 |
17
|
anim2i |
|- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( Q e. X /\ R e. Y ) ) -> ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( X =/= (/) /\ Y =/= (/) ) ) ) |
19 |
18
|
3adant3 |
|- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( Q e. X /\ R e. Y ) /\ ( S e. A /\ S .<_ ( Q .\/ R ) ) ) -> ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( X =/= (/) /\ Y =/= (/) ) ) ) |
20 |
1 2 3 4
|
elpaddn0 |
|- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( X =/= (/) /\ Y =/= (/) ) ) -> ( S e. ( X .+ Y ) <-> ( S e. A /\ E. q e. X E. r e. Y S .<_ ( q .\/ r ) ) ) ) |
21 |
19 20
|
syl |
|- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( Q e. X /\ R e. Y ) /\ ( S e. A /\ S .<_ ( Q .\/ R ) ) ) -> ( S e. ( X .+ Y ) <-> ( S e. A /\ E. q e. X E. r e. Y S .<_ ( q .\/ r ) ) ) ) |
22 |
5 14 21
|
mpbir2and |
|- ( ( ( K e. Lat /\ X C_ A /\ Y C_ A ) /\ ( Q e. X /\ R e. Y ) /\ ( S e. A /\ S .<_ ( Q .\/ R ) ) ) -> S e. ( X .+ Y ) ) |