Description: Membership in the projective subspace closure function. (Contributed by NM, 13-Sep-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pclfval.a | |- A = ( Atoms ` K ) |
|
pclfval.s | |- S = ( PSubSp ` K ) |
||
pclfval.c | |- U = ( PCl ` K ) |
||
elpcl.q | |- Q e. _V |
||
Assertion | elpclN | |- ( ( K e. V /\ X C_ A ) -> ( Q e. ( U ` X ) <-> A. y e. S ( X C_ y -> Q e. y ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pclfval.a | |- A = ( Atoms ` K ) |
|
2 | pclfval.s | |- S = ( PSubSp ` K ) |
|
3 | pclfval.c | |- U = ( PCl ` K ) |
|
4 | elpcl.q | |- Q e. _V |
|
5 | 1 2 3 | pclvalN | |- ( ( K e. V /\ X C_ A ) -> ( U ` X ) = |^| { y e. S | X C_ y } ) |
6 | 5 | eleq2d | |- ( ( K e. V /\ X C_ A ) -> ( Q e. ( U ` X ) <-> Q e. |^| { y e. S | X C_ y } ) ) |
7 | 4 | elintrab | |- ( Q e. |^| { y e. S | X C_ y } <-> A. y e. S ( X C_ y -> Q e. y ) ) |
8 | 6 7 | bitrdi | |- ( ( K e. V /\ X C_ A ) -> ( Q e. ( U ` X ) <-> A. y e. S ( X C_ y -> Q e. y ) ) ) |