Metamath Proof Explorer


Theorem elpclN

Description: Membership in the projective subspace closure function. (Contributed by NM, 13-Sep-2013) (New usage is discouraged.)

Ref Expression
Hypotheses pclfval.a
|- A = ( Atoms ` K )
pclfval.s
|- S = ( PSubSp ` K )
pclfval.c
|- U = ( PCl ` K )
elpcl.q
|- Q e. _V
Assertion elpclN
|- ( ( K e. V /\ X C_ A ) -> ( Q e. ( U ` X ) <-> A. y e. S ( X C_ y -> Q e. y ) ) )

Proof

Step Hyp Ref Expression
1 pclfval.a
 |-  A = ( Atoms ` K )
2 pclfval.s
 |-  S = ( PSubSp ` K )
3 pclfval.c
 |-  U = ( PCl ` K )
4 elpcl.q
 |-  Q e. _V
5 1 2 3 pclvalN
 |-  ( ( K e. V /\ X C_ A ) -> ( U ` X ) = |^| { y e. S | X C_ y } )
6 5 eleq2d
 |-  ( ( K e. V /\ X C_ A ) -> ( Q e. ( U ` X ) <-> Q e. |^| { y e. S | X C_ y } ) )
7 4 elintrab
 |-  ( Q e. |^| { y e. S | X C_ y } <-> A. y e. S ( X C_ y -> Q e. y ) )
8 6 7 bitrdi
 |-  ( ( K e. V /\ X C_ A ) -> ( Q e. ( U ` X ) <-> A. y e. S ( X C_ y -> Q e. y ) ) )