Metamath Proof Explorer


Theorem elpm2g

Description: The predicate "is a partial function". (Contributed by NM, 31-Dec-2013)

Ref Expression
Assertion elpm2g
|- ( ( A e. V /\ B e. W ) -> ( F e. ( A ^pm B ) <-> ( F : dom F --> A /\ dom F C_ B ) ) )

Proof

Step Hyp Ref Expression
1 elpmg
 |-  ( ( A e. V /\ B e. W ) -> ( F e. ( A ^pm B ) <-> ( Fun F /\ F C_ ( B X. A ) ) ) )
2 funssxp
 |-  ( ( Fun F /\ F C_ ( B X. A ) ) <-> ( F : dom F --> A /\ dom F C_ B ) )
3 1 2 bitrdi
 |-  ( ( A e. V /\ B e. W ) -> ( F e. ( A ^pm B ) <-> ( F : dom F --> A /\ dom F C_ B ) ) )