Step |
Hyp |
Ref |
Expression |
1 |
|
fdm |
|- ( F : C --> A -> dom F = C ) |
2 |
1
|
feq2d |
|- ( F : C --> A -> ( F : dom F --> A <-> F : C --> A ) ) |
3 |
1
|
sseq1d |
|- ( F : C --> A -> ( dom F C_ B <-> C C_ B ) ) |
4 |
2 3
|
anbi12d |
|- ( F : C --> A -> ( ( F : dom F --> A /\ dom F C_ B ) <-> ( F : C --> A /\ C C_ B ) ) ) |
5 |
4
|
adantr |
|- ( ( F : C --> A /\ C C_ B ) -> ( ( F : dom F --> A /\ dom F C_ B ) <-> ( F : C --> A /\ C C_ B ) ) ) |
6 |
5
|
ibir |
|- ( ( F : C --> A /\ C C_ B ) -> ( F : dom F --> A /\ dom F C_ B ) ) |
7 |
|
elpm2g |
|- ( ( A e. V /\ B e. W ) -> ( F e. ( A ^pm B ) <-> ( F : dom F --> A /\ dom F C_ B ) ) ) |
8 |
6 7
|
syl5ibr |
|- ( ( A e. V /\ B e. W ) -> ( ( F : C --> A /\ C C_ B ) -> F e. ( A ^pm B ) ) ) |
9 |
8
|
imp |
|- ( ( ( A e. V /\ B e. W ) /\ ( F : C --> A /\ C C_ B ) ) -> F e. ( A ^pm B ) ) |