Step |
Hyp |
Ref |
Expression |
1 |
|
pmapfval.b |
|- B = ( Base ` K ) |
2 |
|
pmapfval.l |
|- .<_ = ( le ` K ) |
3 |
|
pmapfval.a |
|- A = ( Atoms ` K ) |
4 |
|
pmapfval.m |
|- M = ( pmap ` K ) |
5 |
1 2 3 4
|
pmapval |
|- ( ( K e. C /\ X e. B ) -> ( M ` X ) = { x e. A | x .<_ X } ) |
6 |
5
|
eleq2d |
|- ( ( K e. C /\ X e. B ) -> ( P e. ( M ` X ) <-> P e. { x e. A | x .<_ X } ) ) |
7 |
|
breq1 |
|- ( x = P -> ( x .<_ X <-> P .<_ X ) ) |
8 |
7
|
elrab |
|- ( P e. { x e. A | x .<_ X } <-> ( P e. A /\ P .<_ X ) ) |
9 |
6 8
|
bitrdi |
|- ( ( K e. C /\ X e. B ) -> ( P e. ( M ` X ) <-> ( P e. A /\ P .<_ X ) ) ) |