Metamath Proof Explorer


Theorem elpmap

Description: Member of a projective map. (Contributed by NM, 27-Jan-2012)

Ref Expression
Hypotheses pmapfval.b
|- B = ( Base ` K )
pmapfval.l
|- .<_ = ( le ` K )
pmapfval.a
|- A = ( Atoms ` K )
pmapfval.m
|- M = ( pmap ` K )
Assertion elpmap
|- ( ( K e. C /\ X e. B ) -> ( P e. ( M ` X ) <-> ( P e. A /\ P .<_ X ) ) )

Proof

Step Hyp Ref Expression
1 pmapfval.b
 |-  B = ( Base ` K )
2 pmapfval.l
 |-  .<_ = ( le ` K )
3 pmapfval.a
 |-  A = ( Atoms ` K )
4 pmapfval.m
 |-  M = ( pmap ` K )
5 1 2 3 4 pmapval
 |-  ( ( K e. C /\ X e. B ) -> ( M ` X ) = { x e. A | x .<_ X } )
6 5 eleq2d
 |-  ( ( K e. C /\ X e. B ) -> ( P e. ( M ` X ) <-> P e. { x e. A | x .<_ X } ) )
7 breq1
 |-  ( x = P -> ( x .<_ X <-> P .<_ X ) )
8 7 elrab
 |-  ( P e. { x e. A | x .<_ X } <-> ( P e. A /\ P .<_ X ) )
9 6 8 bitrdi
 |-  ( ( K e. C /\ X e. B ) -> ( P e. ( M ` X ) <-> ( P e. A /\ P .<_ X ) ) )