Description: Member of the projective map of an atom. (Contributed by NM, 27-Jan-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pmapat.a | |- A = ( Atoms ` K ) |
|
pmapat.m | |- M = ( pmap ` K ) |
||
Assertion | elpmapat | |- ( ( K e. HL /\ P e. A ) -> ( X e. ( M ` P ) <-> X = P ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmapat.a | |- A = ( Atoms ` K ) |
|
2 | pmapat.m | |- M = ( pmap ` K ) |
|
3 | 1 2 | pmapat | |- ( ( K e. HL /\ P e. A ) -> ( M ` P ) = { P } ) |
4 | 3 | eleq2d | |- ( ( K e. HL /\ P e. A ) -> ( X e. ( M ` P ) <-> X e. { P } ) ) |
5 | elsn2g | |- ( P e. A -> ( X e. { P } <-> X = P ) ) |
|
6 | 5 | adantl | |- ( ( K e. HL /\ P e. A ) -> ( X e. { P } <-> X = P ) ) |
7 | 4 6 | bitrd | |- ( ( K e. HL /\ P e. A ) -> ( X e. ( M ` P ) <-> X = P ) ) |