| Step |
Hyp |
Ref |
Expression |
| 1 |
|
n0i |
|- ( F e. ( A ^pm B ) -> -. ( A ^pm B ) = (/) ) |
| 2 |
|
fnpm |
|- ^pm Fn ( _V X. _V ) |
| 3 |
2
|
fndmi |
|- dom ^pm = ( _V X. _V ) |
| 4 |
3
|
ndmov |
|- ( -. ( A e. _V /\ B e. _V ) -> ( A ^pm B ) = (/) ) |
| 5 |
1 4
|
nsyl2 |
|- ( F e. ( A ^pm B ) -> ( A e. _V /\ B e. _V ) ) |
| 6 |
|
elpm2g |
|- ( ( A e. _V /\ B e. _V ) -> ( F e. ( A ^pm B ) <-> ( F : dom F --> A /\ dom F C_ B ) ) ) |
| 7 |
5 6
|
syl |
|- ( F e. ( A ^pm B ) -> ( F e. ( A ^pm B ) <-> ( F : dom F --> A /\ dom F C_ B ) ) ) |
| 8 |
7
|
ibi |
|- ( F e. ( A ^pm B ) -> ( F : dom F --> A /\ dom F C_ B ) ) |