Metamath Proof Explorer


Theorem elpqb

Description: A class is a positive rational iff it is the quotient of two positive integers. (Contributed by AV, 30-Dec-2022)

Ref Expression
Assertion elpqb
|- ( ( A e. QQ /\ 0 < A ) <-> E. x e. NN E. y e. NN A = ( x / y ) )

Proof

Step Hyp Ref Expression
1 elpq
 |-  ( ( A e. QQ /\ 0 < A ) -> E. x e. NN E. y e. NN A = ( x / y ) )
2 nnz
 |-  ( x e. NN -> x e. ZZ )
3 znq
 |-  ( ( x e. ZZ /\ y e. NN ) -> ( x / y ) e. QQ )
4 2 3 sylan
 |-  ( ( x e. NN /\ y e. NN ) -> ( x / y ) e. QQ )
5 nnre
 |-  ( x e. NN -> x e. RR )
6 nngt0
 |-  ( x e. NN -> 0 < x )
7 5 6 jca
 |-  ( x e. NN -> ( x e. RR /\ 0 < x ) )
8 nnre
 |-  ( y e. NN -> y e. RR )
9 nngt0
 |-  ( y e. NN -> 0 < y )
10 8 9 jca
 |-  ( y e. NN -> ( y e. RR /\ 0 < y ) )
11 divgt0
 |-  ( ( ( x e. RR /\ 0 < x ) /\ ( y e. RR /\ 0 < y ) ) -> 0 < ( x / y ) )
12 7 10 11 syl2an
 |-  ( ( x e. NN /\ y e. NN ) -> 0 < ( x / y ) )
13 4 12 jca
 |-  ( ( x e. NN /\ y e. NN ) -> ( ( x / y ) e. QQ /\ 0 < ( x / y ) ) )
14 eleq1
 |-  ( A = ( x / y ) -> ( A e. QQ <-> ( x / y ) e. QQ ) )
15 breq2
 |-  ( A = ( x / y ) -> ( 0 < A <-> 0 < ( x / y ) ) )
16 14 15 anbi12d
 |-  ( A = ( x / y ) -> ( ( A e. QQ /\ 0 < A ) <-> ( ( x / y ) e. QQ /\ 0 < ( x / y ) ) ) )
17 13 16 syl5ibrcom
 |-  ( ( x e. NN /\ y e. NN ) -> ( A = ( x / y ) -> ( A e. QQ /\ 0 < A ) ) )
18 17 rexlimivv
 |-  ( E. x e. NN E. y e. NN A = ( x / y ) -> ( A e. QQ /\ 0 < A ) )
19 1 18 impbii
 |-  ( ( A e. QQ /\ 0 < A ) <-> E. x e. NN E. y e. NN A = ( x / y ) )