Metamath Proof Explorer


Theorem elpr2OLD

Description: Obsolete version of elpr2 as of 25-May-2024. (Contributed by NM, 14-Oct-2005) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses elpr2.1
|- B e. _V
elpr2.2
|- C e. _V
Assertion elpr2OLD
|- ( A e. { B , C } <-> ( A = B \/ A = C ) )

Proof

Step Hyp Ref Expression
1 elpr2.1
 |-  B e. _V
2 elpr2.2
 |-  C e. _V
3 elex
 |-  ( A e. { B , C } -> A e. _V )
4 eleq1
 |-  ( A = B -> ( A e. _V <-> B e. _V ) )
5 1 4 mpbiri
 |-  ( A = B -> A e. _V )
6 eleq1
 |-  ( A = C -> ( A e. _V <-> C e. _V ) )
7 2 6 mpbiri
 |-  ( A = C -> A e. _V )
8 5 7 jaoi
 |-  ( ( A = B \/ A = C ) -> A e. _V )
9 elprg
 |-  ( A e. _V -> ( A e. { B , C } <-> ( A = B \/ A = C ) ) )
10 3 8 9 pm5.21nii
 |-  ( A e. { B , C } <-> ( A = B \/ A = C ) )