Description: Membership in a predecessor class. (Contributed by Scott Fenton, 17-Apr-2011) (Proof shortened by BJ, 16-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elpredg | |- ( ( X e. B /\ Y e. A ) -> ( Y e. Pred ( R , A , X ) <-> Y R X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpredgg | |- ( ( X e. B /\ Y e. A ) -> ( Y e. Pred ( R , A , X ) <-> ( Y e. A /\ Y R X ) ) ) |
|
| 2 | ibar | |- ( Y e. A -> ( Y R X <-> ( Y e. A /\ Y R X ) ) ) |
|
| 3 | 2 | bicomd | |- ( Y e. A -> ( ( Y e. A /\ Y R X ) <-> Y R X ) ) |
| 4 | 3 | adantl | |- ( ( X e. B /\ Y e. A ) -> ( ( Y e. A /\ Y R X ) <-> Y R X ) ) |
| 5 | 1 4 | bitrd | |- ( ( X e. B /\ Y e. A ) -> ( Y e. Pred ( R , A , X ) <-> Y R X ) ) |