Description: Membership in a predecessor class. (Contributed by Scott Fenton, 17-Apr-2011) (Proof shortened by BJ, 16-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | elpredg | |- ( ( X e. B /\ Y e. A ) -> ( Y e. Pred ( R , A , X ) <-> Y R X ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpredgg | |- ( ( X e. B /\ Y e. A ) -> ( Y e. Pred ( R , A , X ) <-> ( Y e. A /\ Y R X ) ) ) |
|
2 | ibar | |- ( Y e. A -> ( Y R X <-> ( Y e. A /\ Y R X ) ) ) |
|
3 | 2 | bicomd | |- ( Y e. A -> ( ( Y e. A /\ Y R X ) <-> Y R X ) ) |
4 | 3 | adantl | |- ( ( X e. B /\ Y e. A ) -> ( ( Y e. A /\ Y R X ) <-> Y R X ) ) |
5 | 1 4 | bitrd | |- ( ( X e. B /\ Y e. A ) -> ( Y e. Pred ( R , A , X ) <-> Y R X ) ) |