Description: Membership in a predecessor class. (Contributed by Scott Fenton, 17-Apr-2011) Generalize to closed form. (Revised by BJ, 16-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | elpredgg | |- ( ( X e. V /\ Y e. W ) -> ( Y e. Pred ( R , A , X ) <-> ( Y e. A /\ Y R X ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pred | |- Pred ( R , A , X ) = ( A i^i ( `' R " { X } ) ) |
|
2 | 1 | elin2 | |- ( Y e. Pred ( R , A , X ) <-> ( Y e. A /\ Y e. ( `' R " { X } ) ) ) |
3 | elinisegg | |- ( ( X e. V /\ Y e. W ) -> ( Y e. ( `' R " { X } ) <-> Y R X ) ) |
|
4 | 3 | anbi2d | |- ( ( X e. V /\ Y e. W ) -> ( ( Y e. A /\ Y e. ( `' R " { X } ) ) <-> ( Y e. A /\ Y R X ) ) ) |
5 | 2 4 | bitrid | |- ( ( X e. V /\ Y e. W ) -> ( Y e. Pred ( R , A , X ) <-> ( Y e. A /\ Y R X ) ) ) |