Metamath Proof Explorer


Theorem elpredim

Description: Membership in a predecessor class - implicative version. (Contributed by Scott Fenton, 9-May-2012)

Ref Expression
Hypothesis elpredim.1
|- X e. _V
Assertion elpredim
|- ( Y e. Pred ( R , A , X ) -> Y R X )

Proof

Step Hyp Ref Expression
1 elpredim.1
 |-  X e. _V
2 df-pred
 |-  Pred ( R , A , X ) = ( A i^i ( `' R " { X } ) )
3 2 elin2
 |-  ( Y e. Pred ( R , A , X ) <-> ( Y e. A /\ Y e. ( `' R " { X } ) ) )
4 elimasng
 |-  ( ( X e. _V /\ Y e. ( `' R " { X } ) ) -> ( Y e. ( `' R " { X } ) <-> <. X , Y >. e. `' R ) )
5 opelcnvg
 |-  ( ( X e. _V /\ Y e. ( `' R " { X } ) ) -> ( <. X , Y >. e. `' R <-> <. Y , X >. e. R ) )
6 4 5 bitrd
 |-  ( ( X e. _V /\ Y e. ( `' R " { X } ) ) -> ( Y e. ( `' R " { X } ) <-> <. Y , X >. e. R ) )
7 1 6 mpan
 |-  ( Y e. ( `' R " { X } ) -> ( Y e. ( `' R " { X } ) <-> <. Y , X >. e. R ) )
8 7 ibi
 |-  ( Y e. ( `' R " { X } ) -> <. Y , X >. e. R )
9 df-br
 |-  ( Y R X <-> <. Y , X >. e. R )
10 8 9 sylibr
 |-  ( Y e. ( `' R " { X } ) -> Y R X )
11 3 10 simplbiim
 |-  ( Y e. Pred ( R , A , X ) -> Y R X )