Description: Membership in a predecessor class - implicative version. (Contributed by Scott Fenton, 9-May-2012) Generalize to closed form. (Revised by BJ, 16-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | elpredimg | |- ( ( X e. V /\ Y e. Pred ( R , A , X ) ) -> Y R X ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpredgg | |- ( ( X e. V /\ Y e. Pred ( R , A , X ) ) -> ( Y e. Pred ( R , A , X ) <-> ( Y e. A /\ Y R X ) ) ) |
|
2 | simpr | |- ( ( Y e. A /\ Y R X ) -> Y R X ) |
|
3 | 1 2 | syl6bi | |- ( ( X e. V /\ Y e. Pred ( R , A , X ) ) -> ( Y e. Pred ( R , A , X ) -> Y R X ) ) |
4 | 3 | syldbl2 | |- ( ( X e. V /\ Y e. Pred ( R , A , X ) ) -> Y R X ) |