Metamath Proof Explorer


Theorem elpredimg

Description: Membership in a predecessor class - implicative version. (Contributed by Scott Fenton, 9-May-2012) Generalize to closed form. (Revised by BJ, 16-Oct-2024)

Ref Expression
Assertion elpredimg
|- ( ( X e. V /\ Y e. Pred ( R , A , X ) ) -> Y R X )

Proof

Step Hyp Ref Expression
1 elpredgg
 |-  ( ( X e. V /\ Y e. Pred ( R , A , X ) ) -> ( Y e. Pred ( R , A , X ) <-> ( Y e. A /\ Y R X ) ) )
2 simpr
 |-  ( ( Y e. A /\ Y R X ) -> Y R X )
3 1 2 syl6bi
 |-  ( ( X e. V /\ Y e. Pred ( R , A , X ) ) -> ( Y e. Pred ( R , A , X ) -> Y R X ) )
4 3 syldbl2
 |-  ( ( X e. V /\ Y e. Pred ( R , A , X ) ) -> Y R X )