Description: Membership in a predecessor class - implicative version. (Contributed by Scott Fenton, 13-Apr-2011) (Revised by NM, 5-Apr-2016) (Proof shortened by BJ, 16-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elpredimg | |- ( ( X e. V /\ Y e. Pred ( R , A , X ) ) -> Y R X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpredgg | |- ( ( X e. V /\ Y e. Pred ( R , A , X ) ) -> ( Y e. Pred ( R , A , X ) <-> ( Y e. A /\ Y R X ) ) ) |
|
| 2 | simpr | |- ( ( Y e. A /\ Y R X ) -> Y R X ) |
|
| 3 | 1 2 | biimtrdi | |- ( ( X e. V /\ Y e. Pred ( R , A , X ) ) -> ( Y e. Pred ( R , A , X ) -> Y R X ) ) |
| 4 | 3 | syldbl2 | |- ( ( X e. V /\ Y e. Pred ( R , A , X ) ) -> Y R X ) |