Metamath Proof Explorer


Theorem elpreimad

Description: Membership in the preimage of a set under a function. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses elpreimad.f
|- ( ph -> F Fn A )
elpreimad.b
|- ( ph -> B e. A )
elpreimad.c
|- ( ph -> ( F ` B ) e. C )
Assertion elpreimad
|- ( ph -> B e. ( `' F " C ) )

Proof

Step Hyp Ref Expression
1 elpreimad.f
 |-  ( ph -> F Fn A )
2 elpreimad.b
 |-  ( ph -> B e. A )
3 elpreimad.c
 |-  ( ph -> ( F ` B ) e. C )
4 elpreima
 |-  ( F Fn A -> ( B e. ( `' F " C ) <-> ( B e. A /\ ( F ` B ) e. C ) ) )
5 1 4 syl
 |-  ( ph -> ( B e. ( `' F " C ) <-> ( B e. A /\ ( F ` B ) e. C ) ) )
6 2 3 5 mpbir2and
 |-  ( ph -> B e. ( `' F " C ) )