Description: A set is an element of an unordered pair iff there is another (maybe the same) set which is an element of the unordered pair. (Proposed by BJ, 8-Dec-2020.) (Contributed by AV, 9-Dec-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | elpreqprb | |- ( A e. V -> ( A e. { B , C } <-> E. x { B , C } = { A , x } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpreqpr | |- ( A e. { B , C } -> E. x { B , C } = { A , x } ) |
|
2 | prid1g | |- ( A e. V -> A e. { A , x } ) |
|
3 | eleq2 | |- ( { B , C } = { A , x } -> ( A e. { B , C } <-> A e. { A , x } ) ) |
|
4 | 2 3 | syl5ibrcom | |- ( A e. V -> ( { B , C } = { A , x } -> A e. { B , C } ) ) |
5 | 4 | exlimdv | |- ( A e. V -> ( E. x { B , C } = { A , x } -> A e. { B , C } ) ) |
6 | 1 5 | impbid2 | |- ( A e. V -> ( A e. { B , C } <-> E. x { B , C } = { A , x } ) ) |