Metamath Proof Explorer


Theorem elpreqprb

Description: A set is an element of an unordered pair iff there is another (maybe the same) set which is an element of the unordered pair. (Proposed by BJ, 8-Dec-2020.) (Contributed by AV, 9-Dec-2020)

Ref Expression
Assertion elpreqprb
|- ( A e. V -> ( A e. { B , C } <-> E. x { B , C } = { A , x } ) )

Proof

Step Hyp Ref Expression
1 elpreqpr
 |-  ( A e. { B , C } -> E. x { B , C } = { A , x } )
2 prid1g
 |-  ( A e. V -> A e. { A , x } )
3 eleq2
 |-  ( { B , C } = { A , x } -> ( A e. { B , C } <-> A e. { A , x } ) )
4 2 3 syl5ibrcom
 |-  ( A e. V -> ( { B , C } = { A , x } -> A e. { B , C } ) )
5 4 exlimdv
 |-  ( A e. V -> ( E. x { B , C } = { A , x } -> A e. { B , C } ) )
6 1 5 impbid2
 |-  ( A e. V -> ( A e. { B , C } <-> E. x { B , C } = { A , x } ) )