Metamath Proof Explorer


Theorem elpri

Description: If a class is an element of a pair, then it is one of the two paired elements. (Contributed by Scott Fenton, 1-Apr-2011)

Ref Expression
Assertion elpri
|- ( A e. { B , C } -> ( A = B \/ A = C ) )

Proof

Step Hyp Ref Expression
1 elprg
 |-  ( A e. { B , C } -> ( A e. { B , C } <-> ( A = B \/ A = C ) ) )
2 1 ibi
 |-  ( A e. { B , C } -> ( A = B \/ A = C ) )