Description: If a class is an element of a pair, then it is one of the two paired elements. (Contributed by Scott Fenton, 1-Apr-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elpri | |- ( A e. { B , C } -> ( A = B \/ A = C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elprg | |- ( A e. { B , C } -> ( A e. { B , C } <-> ( A = B \/ A = C ) ) ) |
|
| 2 | 1 | ibi | |- ( A e. { B , C } -> ( A = B \/ A = C ) ) |