Description: If a class is an element of a pair, then it is one of the two paired elements. (Contributed by Scott Fenton, 1-Apr-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | elpri | |- ( A e. { B , C } -> ( A = B \/ A = C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elprg | |- ( A e. { B , C } -> ( A e. { B , C } <-> ( A = B \/ A = C ) ) ) |
|
2 | 1 | ibi | |- ( A e. { B , C } -> ( A = B \/ A = C ) ) |