Description: A member of an unordered pair that is not the "first", must be the "second". (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | elprn1 | |- ( ( A e. { B , C } /\ A =/= B ) -> A = C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neneq | |- ( A =/= B -> -. A = B ) |
|
2 | 1 | adantl | |- ( ( A e. { B , C } /\ A =/= B ) -> -. A = B ) |
3 | elpri | |- ( A e. { B , C } -> ( A = B \/ A = C ) ) |
|
4 | 3 | adantr | |- ( ( A e. { B , C } /\ A =/= B ) -> ( A = B \/ A = C ) ) |
5 | 4 | ord | |- ( ( A e. { B , C } /\ A =/= B ) -> ( -. A = B -> A = C ) ) |
6 | 2 5 | mpd | |- ( ( A e. { B , C } /\ A =/= B ) -> A = C ) |