Step |
Hyp |
Ref |
Expression |
1 |
|
neneq |
|- ( A =/= C -> -. A = C ) |
2 |
1
|
adantl |
|- ( ( A e. { B , C } /\ A =/= C ) -> -. A = C ) |
3 |
|
elpri |
|- ( A e. { B , C } -> ( A = B \/ A = C ) ) |
4 |
3
|
adantr |
|- ( ( A e. { B , C } /\ A =/= C ) -> ( A = B \/ A = C ) ) |
5 |
|
orcom |
|- ( ( A = B \/ A = C ) <-> ( A = C \/ A = B ) ) |
6 |
|
df-or |
|- ( ( A = C \/ A = B ) <-> ( -. A = C -> A = B ) ) |
7 |
5 6
|
bitri |
|- ( ( A = B \/ A = C ) <-> ( -. A = C -> A = B ) ) |
8 |
4 7
|
sylib |
|- ( ( A e. { B , C } /\ A =/= C ) -> ( -. A = C -> A = B ) ) |
9 |
2 8
|
mpd |
|- ( ( A e. { B , C } /\ A =/= C ) -> A = B ) |