Metamath Proof Explorer


Theorem elpw2g

Description: Membership in a power class. Theorem 86 of Suppes p. 47. (Contributed by NM, 7-Aug-2000)

Ref Expression
Assertion elpw2g
|- ( B e. V -> ( A e. ~P B <-> A C_ B ) )

Proof

Step Hyp Ref Expression
1 elpwi
 |-  ( A e. ~P B -> A C_ B )
2 ssexg
 |-  ( ( A C_ B /\ B e. V ) -> A e. _V )
3 elpwg
 |-  ( A e. _V -> ( A e. ~P B <-> A C_ B ) )
4 3 biimparc
 |-  ( ( A C_ B /\ A e. _V ) -> A e. ~P B )
5 2 4 syldan
 |-  ( ( A C_ B /\ B e. V ) -> A e. ~P B )
6 5 expcom
 |-  ( B e. V -> ( A C_ B -> A e. ~P B ) )
7 1 6 impbid2
 |-  ( B e. V -> ( A e. ~P B <-> A C_ B ) )