Description: Membership in a power class. Theorem 86 of Suppes p. 47. (Contributed by NM, 7-Aug-2000)
Ref | Expression | ||
---|---|---|---|
Assertion | elpw2g | |- ( B e. V -> ( A e. ~P B <-> A C_ B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi | |- ( A e. ~P B -> A C_ B ) |
|
2 | ssexg | |- ( ( A C_ B /\ B e. V ) -> A e. _V ) |
|
3 | elpwg | |- ( A e. _V -> ( A e. ~P B <-> A C_ B ) ) |
|
4 | 3 | biimparc | |- ( ( A C_ B /\ A e. _V ) -> A e. ~P B ) |
5 | 2 4 | syldan | |- ( ( A C_ B /\ B e. V ) -> A e. ~P B ) |
6 | 5 | expcom | |- ( B e. V -> ( A C_ B -> A e. ~P B ) ) |
7 | 1 6 | impbid2 | |- ( B e. V -> ( A e. ~P B <-> A C_ B ) ) |