Metamath Proof Explorer


Theorem elpwd

Description: Membership in a power class. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses elpwd.1
|- ( ph -> A e. V )
elpwd.2
|- ( ph -> A C_ B )
Assertion elpwd
|- ( ph -> A e. ~P B )

Proof

Step Hyp Ref Expression
1 elpwd.1
 |-  ( ph -> A e. V )
2 elpwd.2
 |-  ( ph -> A C_ B )
3 elpwg
 |-  ( A e. V -> ( A e. ~P B <-> A C_ B ) )
4 1 3 syl
 |-  ( ph -> ( A e. ~P B <-> A C_ B ) )
5 2 4 mpbird
 |-  ( ph -> A e. ~P B )