Description: Closure of class difference with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | elpwincl.1 | |- ( ph -> A e. ~P C ) |
|
Assertion | elpwdifcl | |- ( ph -> ( A \ B ) e. ~P C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwincl.1 | |- ( ph -> A e. ~P C ) |
|
2 | 1 | elpwid | |- ( ph -> A C_ C ) |
3 | 2 | ssdifssd | |- ( ph -> ( A \ B ) C_ C ) |
4 | difexg | |- ( A e. ~P C -> ( A \ B ) e. _V ) |
|
5 | elpwg | |- ( ( A \ B ) e. _V -> ( ( A \ B ) e. ~P C <-> ( A \ B ) C_ C ) ) |
|
6 | 1 4 5 | 3syl | |- ( ph -> ( ( A \ B ) e. ~P C <-> ( A \ B ) C_ C ) ) |
7 | 3 6 | mpbird | |- ( ph -> ( A \ B ) e. ~P C ) |