Metamath Proof Explorer


Theorem elpwdifcl

Description: Closure of class difference with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020)

Ref Expression
Hypothesis elpwincl.1
|- ( ph -> A e. ~P C )
Assertion elpwdifcl
|- ( ph -> ( A \ B ) e. ~P C )

Proof

Step Hyp Ref Expression
1 elpwincl.1
 |-  ( ph -> A e. ~P C )
2 1 elpwid
 |-  ( ph -> A C_ C )
3 2 ssdifssd
 |-  ( ph -> ( A \ B ) C_ C )
4 difexg
 |-  ( A e. ~P C -> ( A \ B ) e. _V )
5 elpwg
 |-  ( ( A \ B ) e. _V -> ( ( A \ B ) e. ~P C <-> ( A \ B ) C_ C ) )
6 1 4 5 3syl
 |-  ( ph -> ( ( A \ B ) e. ~P C <-> ( A \ B ) C_ C ) )
7 3 6 mpbird
 |-  ( ph -> ( A \ B ) e. ~P C )