Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
|- ( ( S e. W /\ S C_ V /\ A e/ S ) -> S C_ V ) |
2 |
1
|
sselda |
|- ( ( ( S e. W /\ S C_ V /\ A e/ S ) /\ x e. S ) -> x e. V ) |
3 |
|
df-nel |
|- ( A e/ S <-> -. A e. S ) |
4 |
3
|
biimpi |
|- ( A e/ S -> -. A e. S ) |
5 |
4
|
3ad2ant3 |
|- ( ( S e. W /\ S C_ V /\ A e/ S ) -> -. A e. S ) |
6 |
5
|
anim1ci |
|- ( ( ( S e. W /\ S C_ V /\ A e/ S ) /\ x e. S ) -> ( x e. S /\ -. A e. S ) ) |
7 |
|
nelne2 |
|- ( ( x e. S /\ -. A e. S ) -> x =/= A ) |
8 |
6 7
|
syl |
|- ( ( ( S e. W /\ S C_ V /\ A e/ S ) /\ x e. S ) -> x =/= A ) |
9 |
|
eldifsn |
|- ( x e. ( V \ { A } ) <-> ( x e. V /\ x =/= A ) ) |
10 |
2 8 9
|
sylanbrc |
|- ( ( ( S e. W /\ S C_ V /\ A e/ S ) /\ x e. S ) -> x e. ( V \ { A } ) ) |
11 |
10
|
ex |
|- ( ( S e. W /\ S C_ V /\ A e/ S ) -> ( x e. S -> x e. ( V \ { A } ) ) ) |
12 |
11
|
ssrdv |
|- ( ( S e. W /\ S C_ V /\ A e/ S ) -> S C_ ( V \ { A } ) ) |
13 |
|
elpwg |
|- ( S e. W -> ( S e. ~P ( V \ { A } ) <-> S C_ ( V \ { A } ) ) ) |
14 |
13
|
3ad2ant1 |
|- ( ( S e. W /\ S C_ V /\ A e/ S ) -> ( S e. ~P ( V \ { A } ) <-> S C_ ( V \ { A } ) ) ) |
15 |
12 14
|
mpbird |
|- ( ( S e. W /\ S C_ V /\ A e/ S ) -> S e. ~P ( V \ { A } ) ) |