Metamath Proof Explorer


Theorem elpwi2

Description: Membership in a power class. (Contributed by Glauco Siliprandi, 3-Mar-2021) (Proof shortened by Wolf Lammen, 26-May-2024)

Ref Expression
Hypotheses elpwi2.1
|- B e. V
elpwi2.2
|- A C_ B
Assertion elpwi2
|- A e. ~P B

Proof

Step Hyp Ref Expression
1 elpwi2.1
 |-  B e. V
2 elpwi2.2
 |-  A C_ B
3 1 elexi
 |-  B e. _V
4 3 elpw2
 |-  ( A e. ~P B <-> A C_ B )
5 2 4 mpbir
 |-  A e. ~P B