Description: Closure of intersection with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elpwincl.1 | |- ( ph -> A e. ~P C ) |
|
| Assertion | elpwincl1 | |- ( ph -> ( A i^i B ) e. ~P C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwincl.1 | |- ( ph -> A e. ~P C ) |
|
| 2 | elpwi | |- ( A e. ~P C -> A C_ C ) |
|
| 3 | ssinss1 | |- ( A C_ C -> ( A i^i B ) C_ C ) |
|
| 4 | 1 2 3 | 3syl | |- ( ph -> ( A i^i B ) C_ C ) |
| 5 | inex1g | |- ( A e. ~P C -> ( A i^i B ) e. _V ) |
|
| 6 | elpwg | |- ( ( A i^i B ) e. _V -> ( ( A i^i B ) e. ~P C <-> ( A i^i B ) C_ C ) ) |
|
| 7 | 1 5 6 | 3syl | |- ( ph -> ( ( A i^i B ) e. ~P C <-> ( A i^i B ) C_ C ) ) |
| 8 | 4 7 | mpbird | |- ( ph -> ( A i^i B ) e. ~P C ) |