Metamath Proof Explorer


Theorem elpwiuncl

Description: Closure of indexed union with regard to elementhood to a power set. (Contributed by Thierry Arnoux, 27-May-2020)

Ref Expression
Hypotheses elpwiuncl.1
|- ( ph -> A e. V )
elpwiuncl.2
|- ( ( ph /\ k e. A ) -> B e. ~P C )
Assertion elpwiuncl
|- ( ph -> U_ k e. A B e. ~P C )

Proof

Step Hyp Ref Expression
1 elpwiuncl.1
 |-  ( ph -> A e. V )
2 elpwiuncl.2
 |-  ( ( ph /\ k e. A ) -> B e. ~P C )
3 2 elpwid
 |-  ( ( ph /\ k e. A ) -> B C_ C )
4 3 ralrimiva
 |-  ( ph -> A. k e. A B C_ C )
5 iunss
 |-  ( U_ k e. A B C_ C <-> A. k e. A B C_ C )
6 4 5 sylibr
 |-  ( ph -> U_ k e. A B C_ C )
7 2 ralrimiva
 |-  ( ph -> A. k e. A B e. ~P C )
8 1 7 jca
 |-  ( ph -> ( A e. V /\ A. k e. A B e. ~P C ) )
9 iunexg
 |-  ( ( A e. V /\ A. k e. A B e. ~P C ) -> U_ k e. A B e. _V )
10 elpwg
 |-  ( U_ k e. A B e. _V -> ( U_ k e. A B e. ~P C <-> U_ k e. A B C_ C ) )
11 8 9 10 3syl
 |-  ( ph -> ( U_ k e. A B e. ~P C <-> U_ k e. A B C_ C ) )
12 6 11 mpbird
 |-  ( ph -> U_ k e. A B e. ~P C )