Metamath Proof Explorer


Theorem elpwpw

Description: Characterization of the elements of a double power class: they are exactly the sets whose union is included in that class. (Contributed by BJ, 29-Apr-2021)

Ref Expression
Assertion elpwpw
|- ( A e. ~P ~P B <-> ( A e. _V /\ U. A C_ B ) )

Proof

Step Hyp Ref Expression
1 elpwb
 |-  ( A e. ~P ~P B <-> ( A e. _V /\ A C_ ~P B ) )
2 sspwuni
 |-  ( A C_ ~P B <-> U. A C_ B )
3 2 anbi2i
 |-  ( ( A e. _V /\ A C_ ~P B ) <-> ( A e. _V /\ U. A C_ B ) )
4 1 3 bitri
 |-  ( A e. ~P ~P B <-> ( A e. _V /\ U. A C_ B ) )